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I. INTRODUCTION

1. Background

Mach reflection phenomenon is of interest to the Army because of its occurrence in sim-
ulations of blast wave interactions typical of nuclear explosions. A nuclear explosion releases
a spherical blast wave that interacts with the ground producing Mach reflection patterns
similar to the patterns produced when a planar shock impinges an inclined surface. For
planar shock and wedge interactions, Mach reflection patterns are dominated by a combi-
nation of the following discontinuities: an incident shock, a reflected shock, a Mach stem,
slip surfaces, and an expansion wave from the wedge leading edge. The region between the
Mach stem and the slip surface is a region of high dynamic pressure. Typically one thinks
of the crushing eflect of the incident blast wave as the primary defeat mechanism of tactical
equipment experiencing a nuclear explosion, but a secondary mechanism, the overturning ef-

fect caused by high dynamic pressure regions, must also be considered and Army equipment
hardened for survivability.

An extensive amount of experimental, theoretical and computational data has been
published (1-4) for the reflection of planar shocks from various inclined rigid surfaces. The
wealth of qualitative and quantitative data available, and the similarity to blast wave phe-
nomenology, makes the simulation of the reflection of planar shocks from wedge surfaces
a good choice for computer code verification and comparison. Three gas dynamic codes,
BLAST2D, SHARC, and STEALTH were run for several planar shock/wedge geometries

and initial conditions and their results compared.

The reflection of planar shocks from a sharp compressive corner can take on one of
four psuedo-stationary (self-similar) patterns, regular reflection (RR), single Mach reflection
(SMR), complex Mach reflection (CMR), or double Mach reflection (DMR). The pattern
that results depends on the wedge angle, the incident shock Mach number, and the gas
equation of state. Figure 1 presents the transition boundaries between the different reflection
patterns for air with a perfect gas equation of state. For the cases presented here, Mach
number approximately equal to 2, regular reflection, single Mach reflection, and complex
Mach reflection are the dominant patterns. Schematics of these patterns are also shown in
Figure 1.

Additionally, a shock impinging on a double wedge was computationally simulated with
BLAST2D for comparison to an experimental shadowgraph and SHARC results. When the
planar shock impinges the first wedge, a direct single Mach reflection occurs. However, when
the single Mach reflection systeun impinges the second wedge an inverse Mach reflection
results. The interesting feature of an inverse Mach reflection is that its triple point propagates
toward the wedge surface, and eventually reflects from the wedge surface producing a complex
wave pattern mainly dor .inated by a regular reflection pattern.

Takayama and Ben-Dor (5) and Ben-Dor et al.(6) published experimental shadowgraphs
which show the details of the inverse Mach reflection process. Dawson et al.(7) published a
SHARC computational simulation of the the double wedge case in which the major features of




the complex wave pattern were reproduced in a density contour plot. bt some of the slip lines
revealed in an experimental shadowgraph were not computationally captured. Capinring
gradients through contour plots requires adequate grid resolution for the problem and an
adequate choice of grid contour levels. In addition, experimental shadowgraphs are based on
the second derivatives of density, therefore, computational shadowgraphs, similarly based on
the second derivatives of density. were generated using spatially and temporalls second-order
accurate BLAST2D results to see if all the slip lines could be revealed. This is the first time
to this author’s knowledge that computational shadowgraphs for wedge problems have been
published.

2. Objectives

The objectives of this report are to compare results from BLAST2D to results obtained
with the STEALTIH and SHARC codes for shocks with Mach number equal to 2.12 impinging
on single wedges. Grid resolution effects will be examined. Contour plots and pressure
versus time histories will be compared. Also, a BLAST2D computation was performed
for the double wedge case to see if the complex inverse Mach reflection pattern produced
experimentally and reproduced partially by a SHARC density contour plot could be fully
captured by BLAST2D results and a computational shadowgraph contour plot. A discussion
of the BLAST2D code follows but for more information on the STEALTH and SHARC codes
the reader should consult references 8 and 9.

II. THE BLAST2D CODE

1. Governing Equations

The governing equations for the blast problems presented here are the two-dimensional
unsteady Fuler equations, written in integral form:

d
——/QdV+/11~F(iS:0 (1)
dt Jv s

The integral form of the Euler equations can be rewritten for a two-dimensional gener-
alized cell volume as:
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This set of four integral equations represents the conservation of mass, momeatum in
x and v directions, and energy, per unit volume where p is the densivy, pis the pressure, u
and v are the velocities in the x (longitudinal) aud y (height) directions respectively, and e
is the total internal eicergy per unit volume:

; :(7’“:1)+1/2 plut + ot (4)

The volume fluxes are defined as:
U=yu—rye (3)
V =yeu+ zev (6)

For a two-dimensional cell, the integration of flux over the surface in Equation ! has
been replaced in Equation 2 by an integral over each face of the cell. The 5-direction is taken
as the body normal and the & direction is tangential to the surface of tiie body. The cell
volume and walls are assumed to be fixed in time. The metrics r¢,y¢, z,,u, are the vector
clements of the cell walls and V is the volume of the grid cell.

The physical. independent variables (x,y,t) were transformed into a uniformly spaced
computational grid (£.7.7) by a general transformation of the form:

T=t

£=¢&(tr,y) (
n = n(t,r,y)

-1
~—

The transformations were chosen so that the grid spacing in the computational space is
uniform and of unit length, Aé = 1. Anp = I. Thus, the uniform equi-spaced mesh in £ and
n allows the use of unweighted differencing schemes. As a result, the computational code
can he applied to a variety of physical geometries and grids.

If an average flux is defined on the cell faces, and A€ and An are taken as umity, the
integral form of the Euler equation, Equation 2 can be rewritten in finite volume form as:

n+l _ Mn ' _ m [m _ fom
QI-J Q!‘J “i41/2 [‘1—1/2‘1 + Ft‘1+1/2 F:‘.J—l/2 -0

Vv 8
t AT A€ An (8)

where the indices i and j correspond to the € and n directions respectively in the computa-
tional mesh.

-
N
«

The vectors £ and F' are the convective numerical fluxes in computational space (€,7,7)
consistent with the physical fluxes E and F in (x,y,t). The vector @ consists of the cell




averaged dependent variables. The integration scheme is fully implicit if m=n+1 and is
explicit if m=n. The variables have been nondimensionalized as follows;

. T .U . p
T = — u=— = —
I ) b prct
y . . €
y== == €= — (9)
L ¢ prC3
- P t* tcl
p=— = —
P1 L

where L=1, c=sound spced, and subscript | represents the ambient conditions initially
present in the driven section.

2. The Computational Algorithm

The fine grid compu‘ations were performed on a Cray XMP/48 supercomputer and
the coarse grid computations on an IRIS4D workstation by discretizing the Euler equations
with an upwind. Total Variation Diminishing (TVD), finite-volume, implicit scheme. In
previous papers, the scheme was presented in detail and proved to be well suited for blast
wave calculations (10.11). For a complete mathematical description of the algorithm, the
reader is referred to these reports. The remainder of this section contains a description of
the characteristics or the algorithm in general terms.

The BLAST2D algorithm is based upon Roe’s approximate Riemann solver (12) cou-
pled with upwind flux difference splitting. Other approximate Riemann solvers could have
been used, but Roe's method is the approach recommended by Chakravarthy when com-
putational efliciency is important (13). The Riemann problem is given two initial states
and the dependent variables at the center of two neighboring control volumes for a finite
volume formulation, compute the wave families (that is the combination of shocks, contacts,
and rarefaction fans) that result at the interface of the control volumes. Roe’s technique
provides a direct approximation of the intermediate states in contrast to a solution of the
exact Riemann problem which requires an iterative process.

Once the piecewise constant states separated by the wave families are determined, the
flux differences across each wave family can be computed. Upwinding requires that the flux
differences across right running wave families (positive eigenvalues) be used in the derivative
evaluations of fluxes into neighboring fluid cells to the right of the Riemann solution and
that the flux differences across left running wave families (negative eigenvalues) be used in
the derivative evaluations of fluxes into neighboring fluid cells to the left. In this way a
method of characteristics-like flavor is brought iniu the numerical algorithm. Flux difference
splitting with TVD was used to achieve second-order accuracy without introducing spurious
oscillations near discontinuities.

The second-order convective flux was produced by adding a correction term to the
first-order flux. However, in order to avoid spurious oscillations, the correction term must




fulfill the c.iteria for the algorithin to be TVD. TVD schemes achieve second-order accu-
racy without introducing spurious oscillations near discontinuities by employing a feedback
mechanism- “simart numerical dissipation’- wherein fluxes are compared at neighboring con-
trol volumes. In regions of little change no numerical dissipation is added to the second

order correction terms, while in regions of large change, numerical dissipation is added to
ensure numerical stability.

During this process new extrema are not created by the numerical dissipation. TVD
data preserve monotonicity; a) no new numerical extrema is created and b) the absolute value
of already existing numerical extrema must not increase. TVD schemes have been rigorously
proven in one dimension, however the extensions to two and three dimensions have not been
mathematically proven. The advantages of TVD algorithms over older schemes are that
strong gradients and complex flow fields are resolved accurately without the need to adjust
arbitrary smoothing parameters. The disadvantages of upwind differencing with TVD are
long computing times caused by an increase in the number of arithmetic operations per
integration step and loss of programming simplicity.

The conservative nature of the scheme captures shocks and other discontinuities au-
tomatically. The finite volume philosophy ensures conservation at interior and boundary
points. The scheme is made implicit by linearizing only the first-order contribution and by
employing a Newton iteration of the type described by Rai (14) to eliminate any approxima-
tions made. The implicit version of the scheme requires more computations per integration
step than the explicit version, but is necessary to handle the stiff nature of the problems.

The discussion in this section assumed the reader was familiar with state-of-the-art
computational fluid dynamic terms and definitions. Others are urged to read the reports
referenced in this section for a full mathematical description.

III. GEOMETRY, GRID, AND INITIAL CONDITIONS FOR WEDGE
COMPUTATIONS

Computations with BLAST2D were performed for the wedge configurations and initial
conditions shown in Figures 2 and 3. All dimensions given are in centimeters. Figure 2 shows
the geometries for the single wedge cases while Figure 3 shows the geometry for the double
wedge case. Figure 2(A) was run with a 189x172 grid for comparison to the SHARC code.
Figures 2(B), 2(C), and 2(D) were run with 98x25, 46x25, and 68x25 grids respectively
for comparison to the STEALTH code. The shock was initialized one centimeter in front of
the start of the wedge for case (A) and two centimeters in front of the leading edge of the
wedge for cases (B), (C), and (D). Figure 3 was run with a 200x200 grid for comparison to
the SHARC code and the shock was initialized at x=.40 centimeters. The geometries and
grids were chosen to reproduce simulations already completed by Heilig (15), Lottero and
Wortman (16), and Dawson et al. (7) using the STEALTH and SHARC codes.
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IV. RESULTS AND DISCUSSION

1. 30 Degree Wedge - 98x25 grid

Figure 4 presents BLAST2D density and pressure contours superimposed on the com-
putational grid (black lines) for a shock with Mach number equal to 2.12 impinging on a
30 degree wedge. The contour data is normalized by conditions in front of the shock and is
shown at 171 microseconds from the start of the calculation. The calculation was started at
time zero with the shock one centimeter in front of the leading edge of the wedge. For this
geometry and initial shock, a single Mach reflection results. Even at this coarse resolution
the slip line is resolved in the density contours, but is too diffuse for accurate angle mea-
surements and comparison to von Neumann theory. The slip line is defined as a streamline
where the flow on either side has the same static pressure and flow direction, however, the
density, velocity magnitude, temperature, and other related functions are different.

The slip line 1s more clearly seen in Figures 5 and 6 which present contour plots of
Mach number, velocity magnitude, temperature, speed of sound, dynamic pressure, entropy,
shadowgraph function, and vorticity magnitude. Appendix A presents equations for these
functions. Perhaps the most interesting of these plots is the dynamic pressure plot. Clearly
the region between the Mach stem and the slip line is the region of highest dynamic pressure.
The Army is especially interested in this region because the high dynamic pressure can
overturn and translate vehicles and equipment, diminishing their survivability in the event
of a nuclear explosion.

The shadowgraph function is the second derivative of density in each direction added
together. However, beause the grid is coarse, the discontinuities in the computational shad-
owgraph are extremely smeared. As shown by the 189x 172 grid shadowgraph contour plot,
higher grid resolution produces computational shadowgraphs that are comparable to the
resolution seen in experimental shadowgraphs.

In simple terms, entropy is a measure of the disorder of the system, the higher the
entropy, the greater the disorder. The highest entropy region, shown in Figure 6, is the
region between the Mach stem and the slip line. The vorticity magnitude plot, Figure 6,
shows this region to have the highest vorticity which indicates rotational flow present. Flow
regions with zero vorticity magnitude are irrotational. A major difference between the low
resolution contour plots just examined and the high resolution plots discussed in the next
section is the low resolution plots indicate the entire region between the Mach stem and the
slip line to be rotational, while the high resolution plots show only the slip line and a small
area behind the Mach stem as rotational. The higher resolution case discussed next, in the
absence of viscous effects. should provide more accurate results.




2. 30 Degree Wedge - 189x172 grid

Figure 7 presents BLAST2D density and pressure contours superimposed on grid lines
for a fine resolution run. Only every other grid line is plotted for clarity. The most significant
feature of the finer resolution is all discontinuities are captured more accurately. The angles
between the discontinuities were measured and are in excellent agreement with Von Neumann
values as reported by Heilig (15). Figure 8 presents Mach number, velocity magnitude,
temperature and speed of sound contours. Qualitatively, the plots appear to produce correct
trends. Figure 9 presents dynamic pressure, entropy, shadowgraph function, and vorticity
magnitude contours. The dynamic pressure contour shows the roll-up of the slip line as the

highest dynamic pressure region. This is the region, discussed earlier, that is responsible for
overturning.

3. 30 Degree Wedge - Contour Plot Comparisons

Figure 10 presents a comparison of BLAST2D and SHARC contour plots for the
139x172 grid. In order to grid the wedge, SHARC is restricted to island, that is rect-
angular solid cells, or shore cells which are rectangular cells split along either diagonal and
half of which is treated as solid and the other half as fluid. By choosing the proper aspect
ratio rectangles and using shore cells, SHARC could model a smooth wedge surface of the
required slope for the thirty degree wedge. The grid for BLAST2D is a body co:frmal grid
produced using an elliptic grid generation code.

Both codes appear to resolve the discontinuities present, however, the slip line captured
by SHARC is not as crisply defined. Also, the slip line produced by SHARC appears to
turn into the Mach stem with an unrealistic clustering of the contour lines. Lottero and
Wortman are investigating the cause of this inaccuracy, which may be a plotting error in
the postprocessing routines. Both codes show some contour lines that are numerical noise
in front of the incident shock. However. the noise does not show up in pressure-versus time
histories and is not considered significant.

Figure 11 presents a comparison of contours generated by BLAST2D and the STEALTH
code with similar resolution in the y direction, however the x direction resolution is ambigu-
ous in the case of STEALTH because the grid points move for this Lagrangian calculation.
It is clear that the contours produced by STEALTH are not as crisply defined as either
BLAST2D or SHARC. However, it should be noted that STEALTH was rezoning iu this
computation. This could be a source of inaccuracy. There is no reason to believe that
STEALTH numerics alone are responsible for the poorly defined results. One would not
normally choose a Lagrangian code for this type of computation.
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4. 30 Degree Wedge - Pressure versus Time Comparisons and Surface Density
Plots

Figures 12-14 show the effects of grid resolution on pressure versus time histories as
well as a comparison of BLAST2D, STEALTH and SHARC results. Positions A-F are
experimental probe locations as reported by Heilig (15): Position A, x=12.250, y=-9.0672,
Position B, x=12.250, y=-4.3365, Position C, x=12.250, y=-0.78845, Position D, x=18.500,
y=-3.7474, Position E, x=138.500, y=-2.7488, Position I, x=18.500, y=-0.49977. The y values
are subtracted from 10, the overall height of the computational domain, to get the positive
y positons. The leading edge of the wedge was defined by Helig as x=12.0, y=0.0. For the
SHARC comparisons, Lottero and Wortman (16) defined the relative positions to the leading
edge to be the same, but the leading edge was defined as x=0.0, y=0.0. As expected, the
finer grid resolution produces sharper discontinuities, that is, discontinuities with less rise
time. The various codes seem to be in reasonable agreement for the same resolution with
one exception. The STEALTIH code produces a rise in pressure at Position B that occurs
at a much earlier time, 100 microseconds, than BLAST2D or SHARC, 190 microseconds.
Position B was either incorrectly reported, or incorrectly placed for the STEALTH run.
BLAST2D has the least oscillatory nature at discontinuities, nevertheless all codes are in
very good agreement with experimental results shown as solid lines.

Surface density results from BLAST2D are presented in Figure 15 for the coarse and
fine resolutions run. The fine resolution captures discontinuities with smaller rise times,
however the coarse resolution also does an excellent job of reproducing the correct overall
pressure levels and trends. Both resolutions are in excellent agreement with Von Neumann

theory for p,/p, and p,/p,.

5. 45 Degree Wedge - 68x25 grid, 60 Degree Wedge - 46x25 grid

The 45 and 60 degree wedge cases were run using BLAST2D for comparison to STEALTH
results. The grids were chosen to closely approximate the starting grids used with STEALTH.
Figures 16 and 17 present density and pressure contour comparisons for these wedge angles.
The 45 degree case was expected to produce a complex Mach reflection, however, only a
single Mach reflection pattern was discernible from the contour plots. A kink clearly can not
be seen in Figure 16. Using a fine grid resolution, and a second order Godunov scheme Glas
ct al. (1), also produced contour plots for this case which did not show a clearly discernible
kink, however, when they increased the Mach number of the shock from 2.1 to 2.3 and used
the same fine resolution, a kink appeared. In general, Figures 16 and 17 show that the con-
tour plots produced by STEALTH are more noisy than those produced by BLAST2D, but
more disturbing is the STEALTH density contour plot for the 60 degree wedge case showed
an attached shock at the corner of the wedge which is unrealistic. BLAST2D at the same
resolution, and SHARC on a higher resolution grid (16), showed no evidence of an attached

shock.

Figures 18 and 19 present BLAST2D and STEALTH snapshots of the pressure along a

b




constant j grid line for the 45 and 60 degree wedge cases respectively. Also, Von Neumann
predictions are plotted for reference. Both codes appear to do a good job of predicting the
overall pressure level behind the incident and reflected shocks. Surface density plots were
computed for BLAST2D results and are presented in Figures 20 and 21 for completeness.

6. 25 and 60 Degree Double-Wedge - 199x199 grid

Figure 22 presents the density contour plot computed using BLAST2D results at 308
microseconds for the double wedge case. Initially, the incident shock reflects over the first
wedge surface as a single Mach reflection. The Mach stem created by the first wedge reflects
from the second wedge as another single Mach reflection. Later the triple point from the first
wedge reflection process and the triple point from the second wedge combine to form one
single Mach reflection pattern which moves toward the wedge surface and is termed an inverse
Mach reflection. The inverse Mach reflection occurs because the second effective wedge angle
is such that it cannot support stationary or direct Mach reflection. For stationary Mach
reflection the triple point moves parallel to the wedge surface and for direct Mach reflection
the triple point moves away from the wedge surface.

When the inverse Mach reflection rollides with the wedge surface, a regular reflection
pattern results. Figure 22 shows the density contour plot produced by BLAST2D for the
coinplex pattern that results after the collision of the inverse Mach reflection with the wedge
surface. When this figure is compared to the experimental shadowgraph in Figure 23, one

notices three slip lines in the experimental shadowgraph that are not clearly indicated in the
density contour plot.

Dawson et al. published (7) a density contour plot for the same case using SHARC
which also did not capture the slip lines. Probably, adequate grid resolution and contour
levels were used, but gradient plots were not published. When a density gradient magnitude
contour plot was computed using BLAST2D, Figure 24, two of the slip lines are resolved,
and furthermore when a shadowgraph function contour plot, Figure 25, was produced, all
gradients of interest were resolved. It is interesting to note that in the experimental shadow-
graph, one does not get a good appreciation of the differing strengths associated with each
of the discontinuities. However, the computational shadowgraph shows that the third slip
line is bounded by contour levels that are very close to ambient levels.

V. CONCLUSIONS

To conclude, for sharp accurate rise-times, a fine grid is required, while for pressure
level trends, a coarse grid is adequate. Also, finer resolution showed the roll-up of the slip
line for the 30 degree wedge case to be a region of high dynamic pressure, instead of the
entire region between the Mach stem and the slip line as indicated by the coarser resolution.

Shadowgraph function contour plots should be used to resolve slip lines that are too
small to be seen in density and density gradient contours. The shadowgraph function contour

9




plot sheuld provide the best comparison to experimental shadowgraphs provided the grid
resolution is fine enough that discontinuities do not become smeared.

BLAST2D captures slip lines very well and is the least oscillatory of the three codes
compared. BLAST2D has the advantages that grids can he body conformal, and that it
is constructed with total variation diminishing (TVD) concepts to not produce numerical
overshoots, but has the disadvantage that it is computationally more expensive to run for the
same grid resolution. However, as shown by the 30 degree wedge runs BLAST2D produces
very good results even on coarse grids. STEALTH produced an unrealistic attached shock
for the 60 degree wedge case at coarse resolution which neither BLAST2D using a coarse
resolution or SHARC using a finer grid produced. SHARC has the disadvantages of numerical
overshoots unless artificial viscosity is turned on and judiciously chosen for the problem,
that geometries must be approximated by shore and island cells but, is computationally less
expensive to run than BLAST2D for the same resolution. As shown by the 30 degree wedge
comparisons, the numerical overshoots with SHARC are significant while overshoots with
BLAST2D are not discernible. One can see from a comparison of BLAST2D and SHARC
that the trade-off one tries to optimize when running one computer code or another for a
particular problem is degree of accuracy versus expense.
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rho2= 3023 kg/m*3

INITIAL CONDITIONS: M= 2.12
pP2= 457 kPa rmol= .10684 kg/m*3
pl= S0 kPa T2= 526.75 K
R=- 287 Jikg/K Tle= 29465 K
gamma= 1.4 U2= 47274 mi/s
GEOMETRIES:
dimensions in cm
(A) ®)
100 - 100
12
D e e
My
- 7E055 H — 7.21688
I /
o 00 12.0 Y 120 285
() (O}
100~ 00—
] |[2 12
M, 7.79423 -;1';" - 80
60° 4s5°
|r'_r,,,,,”7_'| g7 T T 777 fl
0.0 100 145 0.0 16.0 240

Figure 2. Wedge Geometries and Initial Conditions for Single Wedge Cases
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INITIAL CONDITIONS: M=~ 1.295 rho2=- 1.80 kg/m*3
p2= 181.94 kPa rhol= 1.183 kg/m*3
pi= 100.08 kPa T2= 352 K
R= 287 J/kgr/K T1= 295 K

gamma= 1.4

DOUBLE-WEDGE GEOMETRY:
dimensions in cm

180 —

Y

— 15.43

00 .83 899 1590

Figure 3. Wedge Geometry and Initial Conditions for Double Wedge Case
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DENS1TY

2.12, 30

Figure 7. Density and Pressure Contours Superimposed on 189x172 Grid, M;
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p - static pressure

p - density

u - x component velocity

v - y component velocity

C, - specific heat at constant volume
C, - specific heat at constant pressure
Velocity magnitude

V = vVu? + v? (A-1)

Speed of sound

a= 1B (A-2)
p
Mach number
M=y (A-3)
T a
Dynamic pressure
Q = 1/2p(u? + v?) (A-4)
Entropy
S=0C,nt 4 cpzn”—;‘i (A-5)
Shadowgraph function
d*p 8%
f= ﬁ + 8_y2 (A-6)

Vorticity magnitude
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